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Abstract
The extension of seasonal to interannual prediction of the physical climate system to include the
marine ecosystem has a great potential to inform marine resource management strategies. Along
the east coast of Africa, recent findings suggest that skillful Earth system model (ESM)-based
chlorophyll predictions may enable anticipation of fisheries fluctuations. The mechanisms
underlying skillful chlorophyll predictions, however, were not identified, eroding confidence in
potential adaptive management steps. This study demonstrates that skillful chlorophyll predictions
up to two years in advance arise from the successful simulation of westward-propagating
off-equatorial Rossby waves in the Indian ocean. Upwelling associated with these waves supplies
nutrients to the surface layer for the large coastal areas by generating north- and southward
propagating waves at the east African coast. Further analysis shows that the off-equatorial Rossby
wave is initially excited by wind stress forcing caused by El Niño/Southern Oscillation-Indian
Ocean teleconnections.

1. Introduction

Marine ecosystems and the living resources they sus-
tain are subject to pronounced climate-driven fluc-
tuations that have long challenged sustainable mar-
ine resource management efforts (Finney et al 2010,
Costello et al 2016, Tommasi et al 2017). These
fluctuations are compounded by ocean warming,
changing ocean productivity baselines, deoxygena-
tion, and acidification, all of which potentially influ-
ence the distribution of marine habitat types, pheno-
logy, and functioning of marine ecosystems (Doney
et al 2012, Cheung et al 2013, Glibert et al 2014,
Dussin et al 2019, Kwiatkowski et al 2020). Although
century-scale climate change assessments provide a
scientific foundation for developing policy options,
such long-term projections are not sufficient for the
tactical management decisions on seasonal to multi-
annual time-scales critical to long-term resilience.
Thus, reliable tools to anticipate seasonal to multi-
annual and longer-term changes in the interacting

physical, chemical, and biological processes are both
required for holistic marine resource management.

Earth system models (ESMs), the most com-
prehensive climate models incorporating Earth’s
biogeochemical cycles, have the potential to pre-
dict phenomena emerging from diverse physical and
biogeochemical processes, including marine ecosys-
tem responses to climate variability (Watanabe et al
2011, Dufresne et al 2013, Dunne et al 2013, Lindsay
et al 2014, Bonan and Doney 2018). Several recent
studies have suggested that many critical drivers of
marine ecosystems, including temperature, nutri-
ents, oxygen, acidity and ocean productivity, may be
predictable on seasonal to multiannual time horizons
(Seferian et al 2014, Taboada et al 2019, Frolicher
et al 2020). This promise has been verified through
the recent integration of biogeochemical dynamics
with physical climate assimilation and prediction sys-
tems (Park et al 2019). Extensive retrospective fore-
cast experiments using an ESM revealed verifiable
seasonal to multi-annual chlorophyll predictions
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in many ocean areas, and promising relationships
with fisheries fluctuations in several large coastal
areas.

One of the strongest linkages between skillful
chlorophyll predictions and reconstructed fisheries
catch was found along the east coast of Africa (Park
et al 2019). Skillful multi-year chlorophyll predic-
tions within two large coastal areas spanning the
east African coast were highly correlated with fluctu-
ations of small pelagic fisheries up to three years in
advance (after allowing for a one year lag for ocean
productivity signals to manifest in the fishable stock).
The mechanisms underlying skillful chlorophyll pre-
dictions, however, were not explored, eroding con-
fidence in predictions in any adaptive management
measures for the significant industrial and subsist-
ence fisheries that they support. The present study
addresses this by conducting a detailed analysis of pre-
diction skill across 20 years of multi-annual refore-
cast experiments initialized every month. Given that
the countries of these regions have started to develop
a transboundary monitoring and assessment pro-
gram to deal with marine environmental issues and
regionalmanagement approaches (Ménard et al 2007,
Hutchings et al 2009, Vousden 2016), the current
study may provide a timely contribution to inform
these efforts by characterizing the dynamical mech-
anisms underlying prediction skill of seasonal tomul-
tiyear chlorophyll variability.

2. Methods

2.1. Global marine biogeochemical prediction
system
The global marine biogeochemical prediction sys-
tem used in the present study is based on the
ESM developed at the Geophysical Fluid Dynam-
ics Laboratory (GFDL). The ESM is a fully coupled
atmosphere-land-ocean-sea ice model integrated
with the GFDL’s marine ecosystem model, the Car-
bon, Ocean Biogeochemistry and Lower Trophics
(COBALTs) (Stock et al 2014a, 2014b). COBALT, an
intermediate complex biogeochemical model, simu-
lates 33 tracers to resolve global-scale cycles of nitro-
gen, carbon, phosphorus, iron, oxygen, and silica
with three explicit phytoplankton and three explicit
zooplankton groups. The horizontal resolution of the
ESM is 2.5◦ longitude × 2◦ latitude for the atmo-
sphere and land, and 1◦ × 1◦ for the ocean, sea ice,
andmarine biogeochemistry. Each grid has 24 hybrid
sigma/pressure vertical layers for the atmosphere and
50 vertical layers for the ocean.

The initial condition for the marine biogeochem-
ical prediction system is produced from GFDL’s
data assimilation system, the ensemble-coupled data
assimilation (ECDA) system (Chang et al 2013). The
ECDA system assimilates both observed atmosphere
and ocean states, including winds and temperature
from the National Centers for Environmental

Prediction—Department of Energy Reanalysis 2
(Kanamitsu et al 2002), oceanic profiles from the
World Ocean Database and Argo profiles, and the sea
surface data from the National Oceanic and Atmo-
spheric Administration’s optimum interpolation SST
v2 high resolution dataset (Reynolds et al 2007). The
system employs an ensemble Kalman filter assim-
ilation scheme and is integrated with the marine
ecological model, COBALT, to reproduce historical
ocean biogeochemical fields. The modeled oceanic
and atmospheric fields are optimally constrained by
observations to suppress the degradation of biogeo-
chemical fields caused by momentum imbalances
from equatorial data assimilation (Park et al 2018).

2.2. Retrospective forecast experiment and skill
assessment
The retrospective forecasts are the same as the ones
used in a recent study (Park et al 2019). The fore-
cast experiments are initialized at the 1st day of every
calendar month during 1991–2017 and run for two
years with 12 ensemble members (supplementary
figure 1). The initial conditions for this experiment
are produced by data assimilative hindcasts from the
ECDA-COBALT system as described above. A pre-
vious work has already shown that the global ocean
biogeochemical variables produced by this assimil-
ation system can capture well observed large-scale
biogeochemical patterns and variability (Park et al
2018), providing the appropriate initial conditions
for the biogeochemical prediction system. The anom-
alies of predicted biogeochemical variables are calcu-
lated relative to the lead-dependent climatology from
the 27 year ensemble mean predictions for each ini-
tialization month, given that the full-field assimila-
tion method used here generally leads to model drift
toward its own preferred state once the prediction
starts. All forecast data analyzed in this study are the
ensemble mean of predicted variables.

Predicted chlorophyll anomalies are compared
with satellite-retrieved chlorophyll concentrations.
We used the satellite chlorophyll data from the two
ocean color sensors, the Sea-viewing Wide Field-of-
view Sensor and the Moderate Resolution Imaging
Spectroradiometer (Esaias et al 1998, McClain et al
1998). The original chlorophyll data was binned to
a grid of 9 km × 9 km, thus the data has been re-
gridded onto a 1.0◦ × 1.0◦ grid using a bi-linear
interpolation method for computational efficiency.
The median value of chlorophyll in each 1.0◦ grid is
used in the interpolation process given the nearly log-
normal distribution of ocean chlorophyll concentra-
tions (Campbell 1995). Chlorophyll prediction skill is
measured by the temporal anomaly correlation coef-
ficient between the predicted and satellite-retrieved
chlorophyll concentrations after taking logarithmic
transformation. The significance test for the correla-
tion skill uses the reduced number of effective degrees
of freedom that is defined by the autocorrelations of a
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time-varying field, providing a conservative signific-
ance threshold (Bretherton et al 1999).

Chlorophyll prediction skill is evaluated at the
large marine ecosystems (LMEs) scale, by focusing
on the two east African coast LMEs, the Agulhas
Current and the Somali Current. The LMEs are
ocean areas defined by ecological criteria including
bathymetry, hydrography, productivity, and tropho-
dynamics (Sherman 1991). These large coastal areas
encompass regions from estuaries to the seaward
boundaries of the continental shelf or of coastal cur-
rent systems, in which the adaptive management
strategy to environmental changes is important to
facilitate sustainablemarine resource utilization given
their substantial socio-economic benefits (Sherman
2014, Tommasi et al 2017).

3. Result

3.1. Chlorophyll prediction skill in coastal LMEs
LME-scale marine biogeochemical prediction from
the global marine biogeochemical prediction system
is assessed by anomaly correlation coefficient between
the predicted and satellite-retrieved chlorophyll dur-
ing the period 1998–2018. Chlorophyll anomalies are
averaged in each LME region after removing the cli-
matological annual cycle. The correlation coefficient
is calculated for each initialization month and lead
time (see section 2).

The prediction system shows notable chlorophyll
forecasting skill in the two African coastal LMEs,
Agulhas current and Somali coastal current systems
(figure 1; geographical locations of both LMEs are
shown in supplementary figure 2). In the Agulhas
Current system, significant chlorophyll prediction
skill appears up to two years, with the alternating pat-
tern of high- and low-prediction skills in diagonal
bands corresponding to high predictability seasons
(figure 1(a)). The skillful predictions are mostly pos-
sible in the austral winter and early spring regard-
less of initialization month, whereas in other seasons
chlorophyll predictions are not possible, particularly
for austral summer forecasts. The highest chlorophyll
prediction skill in the austral winter and early spring
correspond to the period of highest chlorophyll con-
centrations during which mixed layers are deepest in
this predominantly nutrient-limited subtropical sys-
tem (supplementary figure 3(a)). The high predic-
tion skill in austral winter and its reappearance in the
following winter are similar to a prediction pattern
of extratropical sea surface temperature and chloro-
phyll, in which a subsurface signal remains and ree-
merges when the mixed layer deepens by strong sea-
sonal wind (Alexander et al 1999, Stock et al 2015,
Park et al 2019). Indeed, the temporal evolution of
subsurface chlorophyll anomalies regressed onto sur-
face chlorophyll shows that significant chlorophyll
signals remain evident beneath themixed layer during
summer and reemerge when the mixed layer deepens

during the subsequent fall and winter (supplement-
ary figure 4).

In the Somali coast, significant chlorophyll pre-
diction skill is generally limited up to lead time
of 1.5 years (figure 1(b)). Unlike Agulhas region,
predictions of both austral summer and winter are
possible within short lead time, and skill is relatively
high for predictions of late austral summer and early
fall (January–April). This coincides with two periods
of peak chlorophyll concentration (i.e. austral sum-
mer and winter) in this region, in which primary
productivity is controlled by wind-drivenmixing and
consequent nutrient entrainment from deeper water
(supplementary figure 3(b)) (Veldhuis et al 1997).
Note that detrending the data has little effect on the
chlorophyll prediction skill in the two LMEs (supple-
mentary figure 5).

The skill of chlorophyll predictions can also be
seen in the interannual time series of satellite chloro-
phyll anomalies in Agulhas and Somali LMEs, where
observed patterns are well predicted from January-
initialized prediction at longer leads, i.e. 21 months
and 20 months leads, respectively (figures 1(c) and
(d)). This temporal chlorophyll variability is found
not to be dominated by a certain area of the LMEs,
given strong covarying relationships of chlorophyll
within the LME systems (supplementary figure 6).
The long-lead prediction is largely dominated by the
high chlorophyll in 2002–2003 that corresponds with
increased small pelagic fish catches during this period
(Hutchings et al 2009), implying the potential util-
ity for marine resource application as seen in a recent
study (Park et al 2019). The skillful LME-scale pre-
diction is particularly encouraging, given the coarse
resolution of ocean grids in this global ESM that lim-
its the simulation of coastal circulation and ecosystem
processes. This indicates that LME-scale chlorophyll
variability in these regions is substantially controlled
by large-scale physical and biogeochemical dynamics
at least for the two year prediction horizon.

3.2. Mechanisms of chlorophyll prediction skill
To understand the dynamics underlying chlorophyll
prediction skill, the temporal evolutions of upper
ocean (0–200 m) nitrate anomaly patterns associ-
ated with chlorophyll variations in the two LMEs are
examined (figure 2). Macronutrients such as nitrate,
phosphate and silicate have been found to have an
important influence on phytoplankton growths in
these systems (Smith and Codispoti 1980, Barlow
et al 2020), thus we analyzed nitrate as a proxy for
nutrient variability associated with chlorophyll pre-
diction skill (supplementary figure 7). The basin-
scale patterns of predicted nitrate anomalies regressed
onto Agulhas satellite chlorophyll show that sig-
nificant positive nitrate anomalies propagate west-
ward from the central Indian Ocean. The pos-
itive predicted nitrate anomalies centered around
80◦ E, 20 months ahead of the September forecast
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Figure 1. Chlorophyll prediction skill in the east African coast LMEs. (a) Chlorophyll prediction skill in Agulhas current large
marine ecosystem (LME). Prediction skill is shown as a function of initialization month on x-axis and forecast lead time on
y-axis. Each prediction skill is assessed by calculating anomaly correlation coefficient between satellite-based and predicted
chlorophyll during 1997–2018. The prediction period is 24 months from each initialization month. Significant (p < 0.05)
prediction skill is marked with white circles. Three month moving average anomalies are used here. (b) Same as (a) but for
Somali coastal current LME. (c) September satellite-retrieved (solid line) and predicted (dashed line) chlorophyll anomalies in
the Agulhas current LME. The predicted anomalies are January-initialized chlorophyll at 21 month lead time. (d) Similar to
(c) but for August chlorophyll anomalies in Somali coastal current LME at 20 month lead time.

window, propagate westward as the forecast win-
dow is approached (figures 2(a)–(c)), and then spread
both north and south along the western bound-
ary (figures 2(d) and (e)). This eventually increases
upper ocean nitrate and chlorophyll in the Agul-
has system, providing a key source of chlorophyll
prediction skill.

Large-scale evolution of nitrate anomalies linked
to Somali chlorophyll prediction exhibit similar
propagation behavior (figures 2(f)–(j)). The zonally
elongated positive nitrate anomaly appears in the
central Indian Ocean at 19 months lag, and the cen-
ter of nitrate anomaly propagates westward and then
spread to Somali system during the 19 months. The
concurrent connection between nitrate and chloro-
phyll anomalies in the Somali LME is lower than that
in the Agulhas, which is potentially a reflection of
the coastally-restricted Somali system and the prom-
inence of monsoonal wind, and river discharge for-
cing which may partially confound predictable sig-
nals arriving from the ocean basin (Halpern and
Woiceshyn 2001, Mutia et al 2021).

The westward moving nitrate signal across the
Indian Ocean represents the off-equatorial oceanic
Rossby wave slowly propagating from the eastern
Indian Ocean to the west. This wave signal found
in the biogeochemical variable is consistent with
coupled Rossby waves observed in physical variables,
such as sea level or upper ocean heat contents in
the Indian Ocean (White 2000, Jury and Huang
2004). The slow phase speed of Rossby waves in
this off-equatorial region is due to the inverse rela-
tionship between phase speed and latitude, thus it
takes 2–3 years to cross the Indian Ocean at 15◦ S
(Perigaud and Delecluse 1993). Consistent with this,

the propagation speed of nitrate anomalies found in
figure 2 is approximately 0.08 m s−1.

The Rossby wave signal shown in the nitrate
anomalies in the Indian Ocean implies that this phys-
ical oceanic phenomenon provides a basis for pre-
dicting ocean biogeochemical variables in the two
African coast LMEs. The upwelling Rossby wave sup-
plies nutrient to the euphotic layer, and its slowly
moving signal together with reemergence of subsur-
face nutrient anomalies during periods of peak mix-
ing and chlorophyll in these tropical and subtropical
LMEs allows the prediction of coastal chlorophyll at
longer leads. Skill diminishes when surface chloro-
phyll is suppressed by strong stratification over the
austral summer and adjacent months.

3.3. Rossby wave initiated by El Niño/Southern
Oscillation (ENSO)-Indian Ocean teleconnection
Whatmechanisms are associatedwith the initiation of
upwelling Rossby wave and associated nitrate anom-
alies in the IndianOcean? To identify the physical pro-
cess, the analysis for the temporal evolution of large-
scale dynamics is extended up to four years before the
increase in Agulhas chlorophyll anomalies. For this,
we used the reconstructed physical and biogeochem-
ical fields from the ensemble-coupled data assim-
ilation system integrating with the global marine
biogeochemical model (i.e. ECDA-COBALT), which
has been used for the initialization of our two year-
long prediction run (Park et al 2019).

The zonal propagation of nitrate anomalies in
the central Indian Ocean are well depicted in Hov-
möller diagramof nitrate anomalies averaged over the
latitudinal band 20◦–10◦ S (figure 3(a)). The signi-
ficant positive nitrate anomalies found in figure 2(a)
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Figure 2. Temporal evolution of nitrate and chlorophyll anomaly linked to chlorophyll prediction skill. (a)–(e) Predicted upper
ocean (0–200 m) nitrate (NO3; shading) and chlorophyll (contour) fields at the time lag of (a)−20, (b)−15, (c)−10, (d)−5 and
(e) 0 month seasons regressed onto September satellite-based chlorophyll averaged in the Agulhas LME. Stippled area indicates
the 95% confidence region of regressed NO3 anomalies. (f)–(j) Similar to (a)–(e) but for predicted nitrate and chlorophyll
anomalies regressed onto August satellite chlorophyll in the Somali LME.

started about 42 months before the increase in
Agulhas chlorophyll. The westward moving nitrate
anomalies take about 2–3 years to reach the west-
ern boundary and they experience disruptions and
enhancements during the propagation period, pre-
sumably due to the interplay between the Rossbywave
signal and other sources of nitrate variability.

The regressed fields of physical and biogeochem-
ical variables onto the satellite chlorophyll in the
Agulhas system show that the initial positive nitrate

signals are triggered and amplified by two consecutive
La Niña-like patterns at around lag 42 and 32 months
(figures 3(b) and (c)), which is consistentwith the res-
ult shown in figure 3(a). At the time lag of 42months,
a weak La Niña signal in the equatorial pacific is cap-
tured with cyclonic wind stress anomalies over the
southeastern Indian Ocean. This low-level wind per-
turbation is consistent with a Gill-type response to
diabatic warming caused by the eastern Indian Ocean
precipitation anomalies (Gill 1980). This is further
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Figure 3. Large-scale dynamics associated with Agulhas chlorophyll prediction skill. (a) Hovmöller diagram of NO3 anomalies
averaged along the 20◦–10◦ S latitudinal band as a function of time lag. The NO3 anomalies are regressed onto September
satellite-derived chlorophyll of the Agulhas LME for the period 1998–2017 and averaged in the upper ocean (surface to 200 m
depth). Stippled areas denote values above 95% confidence level. (b)–(f) NO3 (shading), SST (contour), wind stress (vector), and
precipitation anomalies (dots) regressed onto September satellite-derived Agulhas chlorophyll at the time lag of (a)−42, (b)−32,
(c)−22, (d)−12 and (e) 0 month seasons. Only significant (P < 0.1) regressed values are plotted except for SST. All anomalies are
three month running means.

supported by an idealized model experiment using a
linear baroclinicmodel (Watanabe and Kimoto 2000)
forced by a prescribed diabatic heating over the east-
ern Indian Ocean at around 110◦ E, 15◦ S (supple-
mentary figure 8). The cyclonic winds can, in turn,
lead to the increase in upper ocean nitrate through the
upwelling of nutrient-rich waters. A similar feature is
also found at the time lag of 32 months (figure 3(b)).
That is, a strong La Nina signal increases the pre-
cipitation in the eastern Indian Ocean, and then it
generates cyclonic flow in the southern subtropical
Indian Ocean, leading to the increase in upwelling
and nitrate. The nitrate anomalies propagate west-
ward with time and finally reach the western bound-
ary at 0 month lag (figure 3(f)). Such westward
nitrate propagation pattern is commonly detected
after major La Niña events despite minor discrepan-
cies in its magnitude and structure, and also detec-
ted after El Niño events with a reversed sign of nitrate
anomalies (supplementary figures 9 and 10). Over-
all inter-basin interacting processes associated with
Agulhas chlorophyll prediction skill are also found
in the observation-based datasets (supplementary
figure 11).

Previous work has shown that Indian Ocean
dipole (IOD) events are accompanied by a
westward-propagating Rossby wave in the south-
ern tropical Indian Ocean generated by wind
stress forcing factors (Masumoto and Meyers 1998,
Vinayachandran et al 2002), implying the poten-
tial role of IOD in chlorophyll prediction skill. The
ESM-based prediction system used here shows sig-
nificant IOD prediction skill within 1.5 year pre-
diction horizon, however, chlorophyll variability in
the Agulhas system generally shows a less signific-
ant correlation with IOD index compared to ENSO
index (supplementary figure 12). The strong correla-
tion between ENSO and Agulhas chlorophyll at long
time lags indicates a primary role of ENSO-Indian
Ocean teleconnection in initiating slowly moving
subtropical Rossby wave and subsequent chlorophyll
variability in the western boundary. In the Somali
system, however, chlorophyll is significantly cor-
related with IOD particularly for short time lags,
with a significant correspondence with ENSO for
longer time lags. This implies that Somali chloro-
phyll is affected by both ENSO and IOD and/or their
co-variability.
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Figure 4. Rossby wave signals in the model and observation. (a) Temporal evolution of oceanic heat content anomalies linked to
chlorophyll anomalies in the Agulhas LME. The heat content anomalies are averaged along the 20◦–10◦ S latitudinal band in the
100–200 m depth and regressed onto the September Agulhas chlorophyll during the period 1998–2017. Stippled area indicates
significant heat content anomalies over 95% confidence level. All anomalies are 3 month running mean. (b) Same as (a) but for
heat content anomalies from observations (EN4).

Lastly, we examine whether the westward mov-
ing Rossby wave signal linked to Agulhas chlorophyll
anomalies is identified in the observation. The
observed ocean temperature analyzed here is from
the EN4 objective analyses data (Good et al 2013).
The ocean temperature averaged in the 100–200 m
depth, i.e. oceanic heat content, is used to diagnose
the upwelling Rossby wave that transports nitrate sig-
nal to the western Indian Ocean. In both model and
observation, the heat content anomalies regressed
onto satellite chlorophyll in the Agulhas region shows
the significant negative anomalies initiated four years
before the increase in Agulhas chlorophyll, and this
negative signal moves westward afterward (figure 4).
The westward-moving heat content anomalies linked
to Agulhas chlorophyll are also present in the pre-
dicted ocean temperature (supplementary figure 13).
The overall results here imply that despite some dis-
crepancies betweenmodel and observations, the ESM
used here captures the basin-wide physical processes
and its accompanying biogeochemical responses,
which is a key source of chlorophyll prediction skill
in the western Indian Ocean LMEs.

4. Discussion and conclusion

The ESM-based marine biogeochemical prediction
system used in the present study shows significant

skill in predicting satellite-derived chlorophyll fluc-
tuations in the east African coastal regions. The
skillful chlorophyll prediction arises primarily from
successfully simulating coupling processes between
atmosphere, ocean, and marine biogeochemistry in
the Indian Ocean. The inter-basin interacting process
between atmosphere and ocean exemplifies the com-
pelling predictive potential of global ESM even for
regional biogeochemical prediction, while regional
model-based prediction systems may be limited in
predicting such inter-basin process. This result is sim-
ilar to enhanced prediction of climate variability by
incorporating inter-basin precursors (Ham et al 2013,
Cai et al 2019).

The ESM-based biogeochemical prediction
system can extend beyond chlorophyll such as oxy-
gen, net primary production, and zooplanktonSuc-
cessful prediction of these key biogeochemical vari-
ables may provide richer information on the linkage
between bottom-up drivers and fisheries production
and its mechanistic principles across globally distrib-
uted ecosystems,thus offering considerable potential
for anticipatory dynamic management of marine
resources (Tommasi et al 2017). Realizing the full
potential of global earth system predictions for mar-
ine ecosystem and resource applications, however,
will require a range of modeling and observational
advances. The lack of global-scale biogeochemical
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observations often hinders the generation of optimal
biogeochemical initialization data and the validation
assessment of model products. In this regard, assimil-
ating the remotely sensed ocean color and the recently
available biogeochemical Argo floats data into the
ESM can bring additional gains in biogeochemical
prediction skill and may eventually provide a robust
time series for reforecast verification. Recent stud-
ies support this point by showing the improvement
of biogeochemical reanalysis from biogeochemical
assimilation and the degradation of biogeochemical
predictions from the perturbations in biogeochem-
ical initial conditions (Ciavatta et al 2014, Ford and
Barciela 2017, Salon et al 2019, Ford 2021).

Future inclusion of dynamic river nutrient fluxes
into the ESM may also improve the coastal biogeo-
chemical prediction skill given that coastal biogeo-
chemical cycles are substantially controlled by river
nutrients (Walker and Rabalais 2006, Sigleo and Frick
2007). For example, a recent observational study
showed that chlorophyll concentration in the east
African coast is largely controlled by river discharge
during the rainy season (Mutia et al 2021). In addition
to the dynamic coupling between river and coastal
water biogeochemistry, much higher resolution than
available in the present model (1◦,∼100 km) would
be preferable to adequately represent the com-
plex coastal physics and biogeochemistry towards
improvement of the coastal chlorophyll prediction.
Such high resolution models are expected to bet-
ter simulate coastal retention and residence time of
oceanic tracers probably due to better representa-
tion of coastal bathymetry and complex fine-scale
dynamics (Liu et al 2019) and should be a priority for
future work.
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